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ABSTRACT

Disorder of electrical propagation pattern might lead to seri-

ous heart attacks, so a variety of efforts have been developed

to identify pathological patterns. Among those works, the

most promising attempt is 3D model-based imaging of car-

diac electrical activities. However, current models are compu-

tationally expensive and often too complicated to be adopted

into clinical data. In this paper, we propose a meshfree

framework, which can build a computational model from the

image-derived geometry straightforwardly, without burden

mesh generation. This image-derived framework opens great

possibilities, including the ability to be directly integrated

into our previous cardiac information recovery framework or

explore cardiac electrical activities with clinical data. Exper-

iments have been conducted on synthetic data to show the

ability of the framework, and on real human data to show its

practical potential.

Index Terms— computational model, image-derived,

meshfree, clinical data

1. INTRODUCTION

Recently modelling of patient-specific cardiac electrical ac-

tivity has become an interesting research topic because the

increasing attention to the model-based imaging technique of

3D cardiac electrical activity [1]. Currently the most popular

computational model for modelling cardiac electrical activ-

ity is the reaction-diffusion model [2]. The reaction-diffusion

model can reproduce a variety of physiological phenomena

by introducing a large set of parameters to represent cardiac

structure and cellular kinematics, but the simulation using

reaction-diffusion model and complicated cellular model is

still a challenge computational work [2]. Many numerical

schemes have been applied to the reaction-diffusion model,

including popular finite element methods (FEMs). Properly

considering the geometrical complexity, the fiber structures

and the material inhomogeneity, FEMs have produced fair re-

sults [3, 4]. However, mesh representation for the heart is

a very complicated and time-consuming task in the FEMs,

with additional needs for taking care of the boundary, material

discontinuities and fiber structures. The emerging meshfree

methods represent an object by distributing sufficient sam-

pling nodes within the space bounded by the object boundary

surfaces, without the needs for mesh generation or compli-

cated coordinate transformation. These properties are very

attractive to large scale simulation of electrical propagation in

different cardiac geometries.

Though large attentions are focused on polishing the exit-

ing models or establishing more realistic models, incorporat-

ing a computational model to analyze clinical data has begun

to gain more attentions, especially from medical image com-

munity [5, 6]. However, there are a lot of issues that restrict

the performance of popular computational models in clinical

data. The main reasons are burdensome computation caused

by the complexity of computational models, and formidable

task to adjust too much parameters of model according to clin-

ical data. There have been several works aimed to establish

computational models for modelling cardiac electrical activ-

ity from clinical data, but these models are over simplified or

need complicated volumetric meshes [7, 5].

In our implementation, Element-free Garlerkin method

(EFGM) [8] is applied to solve a modified Fitzhugh-Nagumo

(FHN) model [3] in an image-derived geometry, which is seg-

mented by 3D active region model (ARM) [9]. This FHN

model is a simplified reaction-diffusion model and its abil-

ity has been well proved in reference [3]. Another advantage

brought from EFGM is zero natural boundary condition can

be handle by Galerkin weak form naturally, but to numeri-

cally solve Galerkin weak form with zero natural boundary

condition by EFGM, sufficient samples should be arranged

in the boundaries. Finally we would like to indicate that the

computational model generated by our meshfree framework

from image data, can be incorporated into our previous car-

diac information recovery framework [10].

2. METHODOLOGY

2.1. Representation of cardiac geometry

In this paper, a method of simultaneous segmentation and mo-

tion recovery of the left ventricle from 3D image sequences

is applied. This variational strategy extends ARM to 3D,

where each ARM node spatiotemporally evolves under the

influences of the internal and external forces towards appar-

ent boundary and structures in the image. Based upon repre-
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a b c1 c2 d df dcf

0.13 0.013 0.26 0.1 1.0 4.0 1.0

Table 1. Parameter of FHN Model

sentation of cardiac geometry, the physically meaningful con-

tinuum biomechanical model of the myocardium is adopted

to regularize the intrinsic behavior of the ARM, while node-

dependent imaging data, the temporal consistent models of

the tissue geometry and kinematics, and the statistical pri-

ors of the myocardial tissue distributions are used as driving

forces. Fig.(1) shows the result of segmentation in one MRI

slice and boundary of endo- and epicardium of canine left

ventricle. Cardiac geometry, which are extracted from MRI

images, are shown in Fig.(6) with fiber orientations. The den-

sity of the node distribution depends on the requirement on

accuracy, and it can be easily refined through node addition

or reduction.

Fig. 1. From left to right: Segmentation result in one MRI

image, the surface representation of the Left ventricle , front

view and top view.

2.2. Galerkin weak form of FHN model

The differential equations of a modified FHN model [3] are:

∂u

∂t
= f(u, v) + � · (D � u)

∂v

∂t
= b(u − dv) (1)

f(u, v) = c1u(u − a)(1 − u) − c2uv

with natural boundary condition ∂u
∂n = 0 since the heart

is modeled as an isolated continuum. Parameter values are
taken from [3] (table 1). State variable u is the excitation
variable which corresponds to the transmembrane voltage, v
is the recovery current variable, n is the normal of the bound-
ary, f(u, v) is the excitation term and a, b, c1, c2 and d are
parameters that define the shape of action potential. These
parameters are constant over time but not necessary in space.
The change of state variables are determined by the excitation
term f(u, v) and diffusion term �·(D�u). If diffusion term
is removed from FHN model the rest parts of FHN model can
be considered as a microscopic cell model. Therefore, FHN
model can be classified as one reaction-diffusion model [2].
Let UI and VI be the nodal values of field variables u and v at
node x, and let Φ be the shape function constructed from mov-
ing least square(MLS) approximation, which will be stated in
section 2.3. Then we have: u ≈ uh = ΦUI , v ≈ vh = ΦVI .

Fig. 2. From left to right propagation waves at 47ms,

95ms, 176ms, and 236ms with irregular sample nodes are

shown(1106 nodes). Fiber orientation from top to down:

(0.577, 0.577, −0.577); (0.577, −0.577, 0.577). 23 quadra-

ture points in each background cell are applied in other

columns. Red color represents active state and blue color rep-

resents quiescent state.

if u and v are placed with ΦUI and ΦVI respectively, con-
tinuous form of equation (1) can be written into a discrete
Galerkin form, readers can refer to reference [11] for more
details about transformation from equation (1) to (2):

∂UI

∂t

∫
Ω

ΦT ΦdΩ = −UI

∫
Ω

(∇ΦT Dtran∇Φ)dΩ+

f(UI , VI)

∫
Ω

ΦT ΦdΩ

∂VI

∂t

∫
Ω

ΦT ΦdΩ = b(UI − dVI)

∫
Ω

ΦT ΦdΩ (2)

where Dtran is the diffusion tensor transformed from local
coordinate. Dtran of one point with α and β defining a ro-
tation around the y− and z− axis of the global coordinate
system according to the fiber orientation can be defined:

Dtran = A−1DA, A = RxzRxy

Rxy =

⎡
⎣ cos α sin α 0

− sin α cos α 0
0 0 1

⎤
⎦ , Rxz =

⎡
⎣ cos β 0 sin β

0 1 0
− sin β 0 cos β

⎤
⎦

and

D =

⎡
⎣ df 0 0

0 dcf 0
0 0 dcf

⎤
⎦

where df is the propagation speed along the fiber, and dcf is

the propagation speed cross the fiber.

2.3. MLS approximation

In our approach, moving-least squares (MLS) [12] method is
used to construct the shape functions, since the function con-
structed from MLS approximation provides the desired order
of consistency, and is smooth throughout the entire domain.
In the MLS approximation the approximation uh(x) becomes

uh(x) =
n∑

I=1

m∑
j=1

pj(x)(A−1(x)B(x))jI (3)

=
n∑

I=1

φI(x)uI = Φ(x)U (4)
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where

A(x) =
n∑

I=1

wI(x)p(xI)p
T (xI), wI(x) ≡ w(x − xI) (5)

B(x) = [w1(x)p(x1), w2(x)p(x2), ..., wn(x)p(xn)] (6)

UT = [u1, u2, ..., un] (7)

In the above equations wI(x) is the cubic spline weight func-
tion, which is defined:

w(r) =

⎧⎨
⎩

2
3
− 4r2 + 4r3 for r ≤ 1

2
4
3
− 4r + 4r2 − 4

3
r3 for 1

2
< r ≤ 1

0 for r > 1
(8)

Let r = ‖x − xI‖/dmI , where dmI is the radius of the influ-
ence domain of a node. Rewrite equations (2) with matrices:

∂UI

∂t
= M−1KUI + f(UI , VI)

∂VI

∂t
= b(UI − dVI) (9)

f(UI , VI) = c1UI(1 − UI)(UI − a) − c2UIVI

Mi,j =

∫
Ω

φT
i φjdΩ, Ki,j =

∫
Ω

BT
i DtranBjdΩ

Bi =

⎛
⎝ φi,x

φi,y

φi,z

⎞
⎠ (10)

Fig. 3. Isochronic representation of ventricle activation. From

left to right: published measurements, simulation of our

meshfree framework

2.4. Integration schemes

In EFGM a regular background mesh, which consists of non-

overlapping regular cells is required in performing the in-

tegration of Galerkin weak form. Therefore, a background

mesh of proper density needs to be designed to approximate

solutions of desired accuracy and handle natural boundary

conditions correctly. In the regular-grid cell structures, there

may exist cells that do not entirely belong to the problem do-

main. A simple visibility scheme that automatically separates

the portion of the cell which lies outside of the physical do-

main is employed.

3. VALIDATIONS AND RESULTS

Synthetic geometry In order to assess the performances

of EFGM, electrical propagations are first tested in a cube,

whose size is 60mm × 60mm × 60mm. To find proper den-

sity of sample nodes to reach a stable speed of propagation

wave, two series of isotropic electrical propagations with in-

creasing regular sample nodes, but different quadrature points

in the background cells, are solved in the cube by setting an

initial potential, 0.5, on the nodes along one side of the cube.

The converge curves are displayed in Fig.(4). From Fig.(4),

we can see that the propagation speed starts to converge after

nodes are more than 103. Finally 1106 irregular sample nodes

are places in the cube to generate plane wave by setting an

initial potential in one side of the cube. The propagation is

displayed in Fig.(2).

Fig. 4. The convergence of the speed of propagation wave

with increasing density of regular sample nodes. (a) 23

quadrature points in each background cell; (b) 333 quadrature

points in each background cell

Auckland heart model In order to assess the accuracy

and efficiency of our meshfree framework, electrical propa-

gation in auckland heart model1 are solved with known dif-

fusion tensors and purkinje network extremities. Since such

measurement data of purkinje network is not available yet,

we have to define those extremities manually. From Fig.(3),

the figure generated from Durrer’s [13] measurements from

isolated human hearts, we can see that purkinje network ex-

tremities are located on the endocardium and then we define

similar locations of extremities in auckland cardiac geometry

by hand. Simulation of our meshfree framework in auckland

heart model is also displayed in Fig.(3). Since it is reported

that isolation of the heart leads to an increase in conduction

velocity [13] and durations of QRS waveform in healthy in-

dividuals vary from 70ms to 80ms the activation process in

our simulation are qualitatively close to the published mea-

surements as we can see in Fig.(3). We also projected our

propagations into body surface to generate surface potentials

and result is display in Fig.(3), too. We also simulate one

case of heart disease, Right bundle branch block (RBBB) and

its BSPs on the torso surface, which are compared to normal

TMPs and BSPs in Fig.(5). In this comparison the differences

between normal case and diseased case have shown the abil-

ity of our framework in reproducing different phenomena of

cardiac electrophysiological activities.

Left ventricular geometry Since patient-specific ge-

ometries of human hearts are unavailable for the moment,

1http://www.bioeng.auckland.ac.nz/cmiss/cmiss.php

1451



Fig. 5. Five samples of normal TMPs and BSPs during one

cardiac cycle: (a) transmembrane potentials in the heart, (b)

BSPs on the torso surface. Five samples of TMPs and BSPs

during one cardiac cycle under the condition of RBBB: (c)

transmembrane potentials in the heart, (d) BSPs on the torso

surface. All the potentials are normalized between 0 and 1
and displayed according to color mapping bar.

a left ventricle of the canine heart segmented by 3D ARM

[9], is used for the simulation of electrical propagation in this

paper. Purkinje network extremities are manually placed ac-

cording to Durrer’s measurement [13], too. Fiber orientations

of the left ventricle of canine heart are obtained by mapping

the data from auckland heart model with the iterative clos-

est points algorithm [14]. Fiber orientations and electrical

propagation on left ventricular geometry are shown in Fig.(6)

respectively.

Fig. 6. From left to right: Fiber structure, front view and top

view of simulation on left ventricle

4. CONCLUSION

We have presented a meshfree framework for building a com-

putational model from an image-derived geometry. Valida-

tions in Auckland heart model has demonstrated the ability of

our meshfree framework in providing a physiological mean-

ingful and computational feasible model for simulations and

our recovery frameworks. We also show our framework’s po-

tential in the left ventricle, but in the near future, we should

explore our framework’s ability in the whole heart.
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